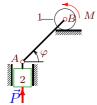
Кафедра теоретической механики и мехатроники

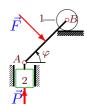

Студент ______гр._____ гр.____ и.___ мин.

Экзаменационный билет 21

Вопрос 1. Теорема о скоростях точек неизменяемого отрезка.

Вопрос 2. Центральный удар. Косой удар. Соударение двух тел. Удар по неподвижному телу

Задача.

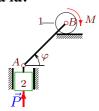


Кафедра теоретической механики и мехатроники

Студент _____гр.___ 29.6.6 ____ч.__ мин.

Экзаменационный билет 22

Вопрос 1. Сложное движение точки. Относительное, переносное и абсолютное движение. **Вопрос 2.** Общее уравнение динамики. Обобщенные силы. **Задача.**

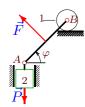

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила $P-\kappa$ поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники

Студент _____гр.___ 29.6.6 ____ч.__ мин.

Экзаменационный билет 23

Вопрос 1. Момент силы относительно центра и относительно оси. Свойства пары сил. **Вопрос 2.** Функция Лагранжа. Уравнение Лагранжа 2-го рода для потенциальных полей. **Задача.**


Кафедра теоретической механики и мехатроники

Студент ______гр.____

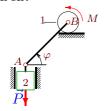
Экзаменационный билет 24

Вопрос 1. Условие равновесия произвольной системы сил. Варианты уравнений равновесия плоской системы сил.

Вопрос 2. Вычисление кинетической энергии тела. **Задача.**

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила $P-\kappa$ поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники

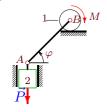

Студент _____гр.___ 29.6.6 ____ч.___ мин.

Экзаменационный билет 25

Вопрос 1. Уравнение трех угловых скоростей. Теорема трапеции. Следствие.

Вопрос 2. Удар. Ударные силы. Теоремы динамики удара. Центр удара. Пример (стержень).

Задача.


Кафедра теоретической механики и мехатроники

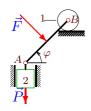
Студент ______гр.______ гр._____ имин.

Экзаменационный билет 26

Вопрос 1. Сложное движение точки. Относительное, переносное и абсолютное движение. **Вопрос 2.** Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода.

Задача.

Кафедра теоретической механики и мехатроники


Студент _____гр._____ гр.____ имин.

Экзаменационный билет 27

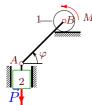
Вопрос 1. Определение ускорений точек при плоском движении (пример).

Вопрос 2. Динамика системы. Теорема о движении центра масс, теорема об изменении количества движения,

Задача.

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила $P-\kappa$ поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент ______гр.______ гр.____ и.___ мин.

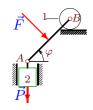
Экзаменационный билет 28

Вопрос 1. Минимальный момент приведения. Центральная винтовая ось.

Вопрос 2. Вывод уравнения Лагранжа 2-го рода.

Задача.

Кафедра теоретической механики и мехатроники


Студент _____гр.___

Экзаменационный билет 29

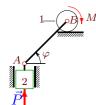
Вопрос 1. Векторы угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.

Вопрос 2. Принцип возможных перемещений. Определение реакций опор с помощью принципа возможных перемещений.

Задача.

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила $P-\kappa$ поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.__ мин.

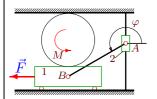
Экзаменационный билет 30

Вопрос 1. Теорема о концах векторов скоростей точек неизменяемого отрезка.

Вопрос 2. Вывод уравнения Лагранжа 2-го рода.

Задача.

Кафедра теоретической механики и мехатроники


Студент ______гр.____

Экзаменационный билет 31

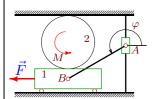
Вопрос 1. Векторы угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.

Вопрос 2. Центральный удар. Косой удар. Соударение двух тел. Удар по неподвижному телу

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с бруском. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса муфты m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.___ мин.

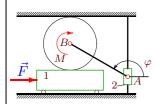
Экзаменационный билет 32

Вопрос 1. Минимальный момент приведения. Центральная винтовая ось.

Вопрос 2. Теорема Карно.

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с бруском. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса диска m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .


Кафедра теоретической механики и мехатроники

Студент _____гр._____ гр.____ и.___ мин.

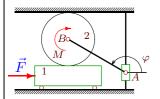
Экзаменационный билет 33

Вопрос 1. Условие равновесия произвольной системы сил. Варианты уравнений равновесия плоской системы сил.

Вопрос 2. Динамика системы. Теорема об изменении кинетической энергии. **Задача.**

По вертикальной направляющей движется муфта A, шарнирно соединенная с диском радиусом R. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса муфты m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.__ мин.

Экзаменационный билет 34

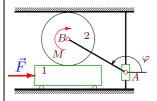
Вопрос 1. Ускорения точек тела при плоском движении.

Вопрос 2. Теорема Карно.

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с диском радиусом R. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса диска m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.___ мин

Экзаменационный билет 35

Вопрос 1. Способы задания движения точки. Скорость и ускорение точки в декартовой системе координат. Трехгранник Френе. Соприкасающаяся плоскость, нормальная, спрямляющая. Нормаль, касательная, бинормаль.

Вопрос 2. Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода.

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с диском радиусом R. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса диска m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники

Студент _____гр.____

Экзаменационный билет 36

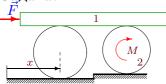
Вопрос 1. Расчет фермы. Метод Риттера и метод вырезания узлов. Сопоставление методов.

Вопрос 2. Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода.

Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. K одному цилиндру массой m_2 приложен момент M, к оси другого — сила F. Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Кафедра теоретической механики и мехатроники


Студент _____гр.____

Экзаменационный билет 37

Вопрос 1. Сложение скоростей. Сложение ускорений. Ускорение Кориолиса. Правило Жуковского.

Вопрос 2. Поле сил. Потенциальные силы. Условие потенциальности поля. Потенциальная энергия.

Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. К одному цилиндру массой m_2 приложен момент M, к бруску — сила F. Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Кафедра теоретической механики и мехатроники

Студент _____гр.___ 29.6.6 ____ч.__ мин.

Экзаменационный билет 38

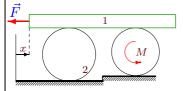
Вопрос 1. Уравнение трех угловых скоростей. Теорема трапеции. Следствие.

Вопрос 2. Динамика точки. Уравнение движения. Способы интегрирования.

Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. K одному цилиндру приложен момент M, к бруску — сила F. Масса цилиндра большего радиуса равна m_2 . Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Кафедра теоретической механики и мехатроники


Студент _____гр.____ 29.6.6 ____ч.___ мин.

Экзаменационный билет 39

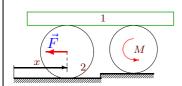
Вопрос 1. Плоское движение. Закон движения. Зависимость (или независимость) уравнений закона движения от выбора полюса. Скорости точек. Кинематические графы.

Вопрос 2. Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода.

Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. К одному цилиндру приложен момент M, к бруску — сила F. Масса цилиндра большего радиуса равна m_2 . Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.__ мин.

Экзаменационный билет 40

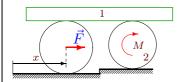
Вопрос 1. Теорема о скоростях точек неизменяемого отрезка.

Вопрос 2. Центр удара. Пример (стержень).

Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. К одному цилиндру приложен момент M, к оси другого — сила F. Масса цилиндра большего радиуса равна m_2 . Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Кафедра теоретической механики и мехатроники


Студент ______гр.______ гр._____ имин.

Экзаменационный билет 41

Вопрос 1. Векторы угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.

Вопрос 2. Теорема Карно.

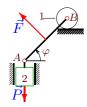
Задача.

Брусок массой m_1 горизонтально лежит на двух цилиндрах радиусов R и r. К одному цилиндру массой m_2 приложен момент M, к оси другого — сила F. Проскальзывание во всех точках контакта отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Зав.кафедрой

Кобрин А.И.

МЭИ(ТУ)


Кафедра теоретической механики и мехатроники

Студент _____гр.___ 29.6.6 ____ч.___ мин.

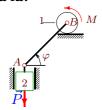
Экзаменационный билет 42

Вопрос 1. Момент силы относительно центра и относительно оси. Свойства пары сил. **Вопрос 2.** Центральный удар. Косой удар. Соударение двух тел. Удар по неподвижному телу

Задача.

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила $P-\kappa$ поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___

Экзаменационный билет 43

Вопрос 1. Векторы угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.

Вопрос 2. Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода.

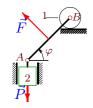
Задача.

Зав.кафедрой

Кобрин А.И.

МЭИ(ТУ)

Кафедра теоретической механики и мехатроники


Студент			_гр
- 574-	29 6 6	ч	т мин

Экзаменационный билет 44

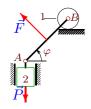
Вопрос 1. Векторы угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.

Вопрос 2. Динамика системы. Теорема о движении центра масс, теорема об изменении количества движения,

Задача.

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила P — к поршню. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент ______гр.______ гр._____ имин.

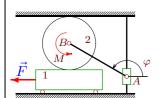
Экзаменационный билет 45

Вопрос 1. Простейшие движения твердого тела. Поступательное движение. Закон движения. Скорости и ускорения точек тела. Вращательное движение. Закон движения. Угловая скорость и угловое ускорение тела.

Вопрос 2. Центр удара. Пример (стержень).

Задача.

Невесомый стержень AB длиной a шарнирно соединяет диск массой m_1 , движущийся по горизонтальной поверхности, и вертикальный поршень массой m_2 . Сила F приложена к середине стержня под прямым углом, сила P — к поршню. Составить уравнение движения системы. За обобщенную координату принять φ .


Кафедра теоретической механики и мехатроники

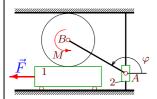
Студент _____гр.___ 29.6.6 ____ч.___ мин.

Экзаменационный билет 46

Вопрос 1. Теорема о скоростях точек неизменяемого отрезка.

Вопрос 2. Динамика точки. Уравнение движения. Способы интегрирования. **Задача.**

По вертикальной направляющей движется муфта A, шарнирно соединенная с диском радиусом R. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса диска m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .


Кафедра теоретической механики и мехатроники

Экзаменационный билет 47

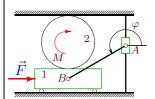
Вопрос 1. Скорость и ускорение точки в естественных осях. Угол смежности. Кривизна кривой. Радиус кривизны. Нормальное и касательное ускорение. Физический смысл компонент ускорения в естественных осях.

Вопрос 2. Динамика системы. Теорема о движении центра масс, теорема об изменении количества движения,

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с диском радиусом R. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса муфты m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .

Кафедра теоретической механики и мехатроники


Студент _____гр.___ 29.6.6 ____ч.___ мин.

Экзаменационный билет 48

Вопрос 1. Теорема о концах векторов скоростей точек неизменяемого отрезка.

Вопрос 2. Вычисление кинетической энергии тела.

Задача.

По вертикальной направляющей движется муфта A, шарнирно соединенная с бруском. Верхней точкой обода диск касается горизонтальной поверхности, нижней – бруска массой m_1 на невесомых подшипниках. Масса диска m_2 . AB=a. Составить уравнение движения системы. За обобщенную координату принять φ .